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ABSTRACT

The numerical solution of the coupled differential equations of motion of the blades of an horizontal
axis wind turbine is a more direct approach than the technique of finite elements, permitting the
The procedure consists in transforming the equation
of motion into a set of first order equations and solving them with fourth order Runge-Kutta integrators.
This technique is applied to a twisted, tapered blade of variable cross section and stiffness including

vptimization of the design at relatively low cost.

discontinuities.

The first six natural frequencies and mode shapes are obtained.

This technique i1s extended to obtain the polar moment of inertia of the blades as a function of

frequency and rotational speed.

A good match with the e¥perimental results is achieved.

INTRODUCTION

The accurate determination of natural frequenciles
is of fundamental importance in the design of
wind turbine blades. Similarly, the polar moment
of inertia of the blades is required for the
study of rhe torsional dynamics of the drive
train.

Rotor dynamics is often studied with the use of
larze and specialized finite elements computer
codas. However, the availability and cost of
operation of these programs limit their use, and

a more direet approach could be bepeficial. The

direcer solution of the coupled differential
ions of motion of the blade is such amap~

prosch, permitting optimization studies at low
costs

This paper presents a model of a nonuni-
tapered, twisted cantilever wind turbige
and 2 method of solutioen.

For the purpose of demonstrating the method, only
the in-plane and out—of-plane bending modes are
considered since the torsional modes occur at
frequencies much higher than the bending modes
because of the high torsional rigidity of the
blade., The coupled differential equations of
motion were transformed into a set of first order
equations and solved with Runge-Kutta numerical
integrators. The turbine blade under study has
maicr stiffness dicontinuities. The blade 1s
therefore considered as if made of ad joining
segments, each one having a varying stiffness.

The first and second derivatives of the stiffness
curves evidently have to be considered. The con—
tinuity of the shear forces and moments was im-
posed between each segments of the blade. With
these variations of the Runge-Rutta method it is
possible to obtain the resonant frequencies and
the normalized distributions of displacement,
bending moment and shear force for the first six
bending mcdes. The coriolis forces and the
tension force due to centrifugal loading are in-
cluded. The modes of vibration are computed for
a regims of rotational speed. The normal and
tangential aerodynamic loading at each section of
the blade could bé included as extra terms in the
differential equations; however, this paper con-
siders only a rotor turning without the aerody-

177

namic forces. These will be included in further

studies dealing with the optimization of small
capacity wind turbines.

An important extension to this model consists in

the formulation of the polar moment of inertia of

the rotor in terms of a couple at a frequency W
applied to the hub and the resultant angular ac-
celeration of the rotor. A direct method using
the shear forces and moments produced by each
blade at the hub and an integral from using the
in-plane displacements (mode shape) along the
blades are formulated and the numerical results
compared. The polar moment of inertia is then
obtained as a function of frequency and rota—
tional speed.

THE EQUATIONS OF MOTION AND THE TRANSFORMATION
METHOD

Lets consider a turbine blade turning cutside the

aerodynamic and gravity field with its main axis

perpendicular to the rotation axis mounted as a

cantilever into a rigid hub. The tension in the
blade due to centrifugal loading is included. If
the blade elongation is assumed to be small re-
lative to the transversal displacements, it can
be demonstrated that the coriolis forces become
negligeable. When only the in-plane and out-of-
plane bending motions are considered, the coupled
differential equations become:

2 2 2
L[Elx v,y | o Tan_l]=

822 y az2 7 ¥y az2 dz 3z

mwzu (1a)
2 2 2
k) 9

Jz 3z 3z

m(w2 + Q%) v (1b)

These equations are a subset of the equations of
Houbolt and Brooks (ref. 1) and an extension of
the equations of Canergie and Dawson (ref. 2) for
a twisted blade. In these equations, the tension



T at any section of the blade i{s independent of
the vibration frequency w but proportional to
Q% and represented by:

2 L
T = Q°f m(z)z3z (2)

4

Taking the first and second derivatives of the
terms in braket while considering the moments of
inertia Iyy, lyy and Ixy as variable along the =z
axis, the system of equation (1) becomes:

EI_u" +EI_v'™ =-E |2 I' v+ 2 I' u™
Yy xy Xy yy

Py 1 e Tem e T
xy Yy ]

+ mwzu (3a)

EI_u"™ +EIL v = -E [21', uT+ 2 I v”
Xy XX Xy XX

Xy XX

+m <w2 + n?,) v (3b)

where ( )' and ( )"... indicate the first, sec-
ond, ..., derivatives with respect to z. It is
seen from these equations that the in-plane and
out-of-plane bending are coupled through I;, and
X ' y

its first derivative Ixy'

e R

The method of transformation of variables, first
proposed by Canergie and Dawson (ref. 2) is gen-
eralized by applying it at any frequency of vi-
bration and not exclusively to find the resonant
frequency. The two fourth order equations are
transformed into eight first order equations by
the following substitutions:

‘11 =y Y5 =v'
Y, =u” Yo =o'
Yy=v" Y7 =v (4)
Y“ = u” YS =u

By substitution and differentiation the following
eight first order equations are obtained:

EI_. Y!'+EL Y'!=-E [21' Y + 1"
xy yy xy 1

1 2 xy 3
v " 1
+ 2 Iyy Y2+1yyY4]+TY4+T Y6
2
+ mw YS (5a)
) 1 ] = - 1
Elm Yl + EIxy Y2 E [2 Ixy ‘x’2
" ' «
+ Ixy Y[‘ + 2 Ixx Yl + Ixx Y3]
+T Y, +T'Y, +m W+ o2 Y (5b)
3 5 ° 7
' =
Y3 Yl (3¢)
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Yz =Y (54)

2
Y'S = Y3 (5e)
Ye =¥, (5£)
vy =Y, (5g)
Y=Y, (5h)

They can be conveniently represented by:

' o=
vy = £, (z,Yl,Yz, ...,Ys)
i=1,2, ..., 8 (6)

Applying the approprilate boundary conditions, it
is then possible to solve equation (6) with the
use of Runge-Kutta numerical integrators.

The displacements and their first, second and
third derivatives are then obtained. From these,
one can compute the distributions of the shear
forces and moments by the usual relations:

F_ = -E [I v+ I' v+ I u™
x Xy Xy

Yy
+ I;yu"] + Tu’ (7a)
F_=-E [I a4+ I' w4+ I vt
y Xy Xy XX
+ I;xv'} + Tv' (7b)
M_=E|I v"+1 u* (7c¢)
X Xy yy
M =E [1 u" + 1 v":l (7d)
y Xy XX

THE BOUNDARY CONDITIONS

Consider the turbine blade shown in figure 1.
The longitudinal axis of the blade is the z axis
and the ‘rotor turns in the y-z plane. The x axis
is the axis of rotation. The blade is mounted in
a rigid hub at 6% of its span (%) and has a total
length of 4.95 meters (L).

Because the blade is rigidly mounted the boundary
conditions are:

u=v=uyu =v' =0 at z =2

thar is YR =0 fori=5,6,7, 8 (8)

At the free end the conditions are:

" " v 3

U =vy" = u"=s vy"= 0 atz =1

since the moments and shear forces are zero;
that is Yy (L) =0 fori=1,2, 3,4 9)

oom o
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Section A-A

Figure 1 - Geometry of IREQ turbine blade

These boundary conditions apply to a stationary 4) Step (3) is repeated by successively
blade. When the hub is allowed to rotate around ) - setting each of the un}gqggrboundary
the x axis the conditions at the free end remain condition to the arbitrary vdlue Cqo.

o unchanged but the displacement v and its slope v' In this way four sets of starting
are different from zero at z = %. However, u and boundary conditions are obtalned for

. u' remain zero since the hub is assumed rigid. z = R:
= === Therefore, 1f the rotor is allowed to spin and
= oscillite in the plane of rotation the boundary Yg Y, Yo Y Y, Yy Y, Y,

_conditions at z = 2 become:
' (r)case u VvV u

(10)

[ o o o o Co © o (13)

condition 1s the consequence of the C. o

being displaced by an amount v(2) at L.
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THE METHCD OF SOLUTION

giving four sets of solutions Tor the
The wmethod of solving equation (3) is as follows: free end:

1) A value is selected for the frequency Y = F, (L =1,2, «uv, 8)
W

2) The four known boundary conditions
{equation 7) at the root are set and
the four unknown conditions are given 5)
arbitrary values namely:

(=1, vou, 4) (14)

The solution of equation (6) is a
combination of these four solutions.

- Namely, I
o Yl = Co, Y2 = Y3 = Y4 =0 (i1)
o 4
3) From these eight boundary conditions at Y(z) = 3 a Y, (2
- ©©  the root a solution is obtained with r=] ’
— the use of fourth order Runge-Kutta in-
- tegrators. Eight values, Yy to Yg, are i=1,2, ., 8) (13)

obtained for the free end:
— However, the known boundary conditions at the

Y, (L) = Fi 1 (L =1,2,...,8) free end are for a cantilever blade:
— i,r R
Y. (L) =0 i=1,2,3,4 16
(r=1) a2) ; W ( 12,3,4) (16)
where the subscript r = 1 indicates the since the shear forces and moments must be zero. ©oC
solution with the first group of bound- The right hand side of equation (15) can then be -
ary conditions; partitioned:
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4
2';“1 a, Fi’r =0 (i=1,2,3,4) (17)

6) A non-trivial solution is possible if
the determinant of the coefficients
Fi,r of equation (17) is equal to zero

HFi,r“ =0 (1=1,2,3,4)

(r = 1,2,3,4) (18)

Therefore, the above steps are repeated with in-
creased values of the vibration frequency w until
equation (18) is satisfied. That w then corre-
sponds to a resonant frequency.

7) Having found the resonant frequency
aj 1s set to 1 and ay, a3 and a; are
computed giving the four unknown
boundary conditions at the anchor
point.

8) The solution is repeated once more with
the following initial conditions:

=

|
- a,
- a,
4

(19)
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In addition to the displacement u & v the shear
forces and moments are computed at each blade
station with equations (7a) to (7d).

The method described above was first used by
Canergie and Dawson (ref. 2) to find the natural
frequencies of a straight constant section blade.
Its application here is extended to twisted,
tapered blade having discontinuity of rigidity.

TURBINE BLADE CHARACTERISTICS

The turbine blade used on the 40 kW, 10 meters
IREQ wind turbine is a twisted, tapered composite
blade made principally of steel and fiberglass.
Figure 1 shows its construction. Its assymetric
aerodynamic profile i1s NACA 4415. The chord is
44.45 cm at the root and 10.92 cm at the free end
with a thickness varying from 7.1l cm to 1.78 cm.
The twist angle B goes from 47.2 degrees to 2
degrees at the tip.

The principal moments of inertia Iyy and lyy

s s
for a group of typical blade sections were com—
puted from an engineering drawing of the blade
and were transformed into the blade principal
axis {in-plane and out—-of-plane) by the usual
relations:

- 2 2
1 Ixx cos“B + Iyy sin“B

S s

c052 B+1 sinZB
XX
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BLADE CHARACTERISTICS
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Flgure 2 - IREQ turbine blade characteristics
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The Ixxg and Iyyg for each element of the blade
section are equivalent moment of inertia based on
the same reference modulus of elasticity E. The
blade actual geometry was found to be signifi-
cantly different from the drawing geometry. The
moment of inertia Ixxg and IYYs are then cor-
rected to account for these manufacturing inac~
curacies. The values used as input to the meodal
analysis program are shown in figure 2. The root
sections of the blade is approximated by linear
distributions while the all fiberglass section
from the end of the steel insert to the blade tip
was approximated by a polynomial computed from
twelve input data points. The first and second
derivatives of Iyx, I and I, were numerically
computed from the above distributions.

In order to take care of the discontinuities of
stiffness, the blade is divided into three sec-—
tions, the first from the anchor point to the
blade root section, the second up to the end of
the steel insert and the third to the tip of the
blade.

The numerical integration is done from the anchor
point to the tip of the blade in a continuous
manner except that the values of four of the
eight state variables (Y] to Y4) are varled in a
stepwise manner at the two major discontinuities
of the blade. This is done because the state
variables being integrated at each segment of the
blade are the numerical derivatives of the dis-
placements u and v, namely u', v', u”, v", u™ and
v™ and not the forces and moments in the blade.
The physical quantities that must be continuous
are the displacements, the slopes, the moments
and the shear forces and the tension, not the
derivatives. Therefore the continuity of the
boundary conditions become:

o "

(NN}

mn
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3 = g M =M
+ _ x+
q' o= oyt M =M
+ y_ +
v_r= v, F, = F, (20)
- +
v o=y F =TF
+ y_ ¥y
T =T,

The indices - and + represent the sections imme-—
diarely to the left and immediately to the right
of the discontinuity. Using equation (7a) to
(7d) and equation (20), it is possible to find
anew values {the + values) for the derivatives u",
v', u™, and v
of the forces and moments across the dis-
continuity. Performing the appropriate algebra
on equations (7) and (20), we get:

B M I ]
y_ _ X XX,
E BT
W o= = R (21a)
I - Yy
Xy I
L
H "
]
Y+ T I - J (21b)
xx, ==X,
F
i- - T Im‘+
_———— 1] AL T " — t -
1 E Ixy+ wm Ve EY) T
+
( Fx_ T )
- —— = 1! v! =17 + v + u
- E yy"_ + + + E +
+ IXX Iyy
+
I - — + (21¢)
xy+ xy+
F
1 *
v o= - —=-1' y" -1' ¥
+ Ixy+ E VY, Xy, +
T.L
+‘E' L - s
E T+ yy, + (214)

It is clear that the shear forces and bending
moments computed with this method are not exact
in the Immediate reglon of the discontinuities.
However the distribution should not be affected
in regions farther from the discontinuities.

FORMILATION OF THE POLAR MOMENT OF INERTIA

The polar moment of inertia J of an horizontal
axiz wind turbine rotor is required for the
anaivsis of the dynamic torsional stability of
the drive train. J varies with the vibration
frequency ® and the rotational speedf{lp . The

that will ensure the continuities.
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Figure 3 - Internal forces and moments at the
blade anchor point.

variations of J are mainly caused by the trans-
verse vibration of the blades. The polar moment
of inertia of the rotor, excluding the hub, is
defined at a frequency w by:

C
v

2

w8

where Cy is the amplitude of the couplf applied
by the hub at the frequency w and -w“0 is the
angular acceleration of the hub. For a sym-
metrical three bladed rotor, J will be three
times the polar moment of inertia of one blade
computed with respect to the rotor hub.

When a blade vibrates at a frequency @, an in-
ternal shear force and moment appear at the
anchor point as shown in figure 3. The shear
force and moument produced by the out-of-plane
vibrations are reacted upon by the rigid hub and
do not appear in the formulation of J. However,
the hub is free to rotate around its axis and the
in-plane vibrations will be reacted by the rotor

hub in the form of a couple. The sign conven-
tion shown 1in figure 4 is introduced such that
F, = - 84 /3Z. The external couple C_, applied

by the hub 1s then:

C, =~ Fv(l) ¢ - Mv(i) (23)

The tension T, belng purely radial at the hub,
does not produce any couple. The external couple
expressed by equation (23) is then introduced in
equation (22) to give:

S -Fv(l) L= M ()

5 (24)
-w v(g)/e

Fq

M2

F2
Vv

Figure 4 - Positive directlons of shear forces
and moments



Since T 1is radial at £, F (2) and M (%) become:

2 |- o " "
Fv(z) = 57 (Elxxv + EIqu ) - 1(25)

MV(Z) = [Elxxv" + EIqu"] - (26)

If the blade section is uniform and symmetric at
the anchor point (a circular section for the IREQ
blade) we have:
1 = 1 = =
IXX(Z) Ixy(Z) Ixy(l) 0 (27)
and (25) and (26) become:

F (&) = “EL_ (1) v(2) (28)
MV(Q) = EIXX(R) v' (%) (29)

giving
EIXX(Q) v'(2) - v KQ)]

I =
w? v/

(30)

In this last equation, the polar moment of iner-
tia of one blade is expressed in terms of the
forces and moments at the rotor hub.

Another representation of the polar moment of
inertia is possible if one considers the in-plane
displacements of the blade as it vibrates at a
frequency w. By using integration by parts on
equations (1) and (7) and applying the
appropriate boundary conditions, {t can be
demonstrated that

L

2 m v z dz

Tty [ G
2

At a very low frequency, the blade is not de=-
formed and moves as a rigid body; v(z) becomes a
stralght line

v(z) = v(Q) z/2 (32}

and (31) takes the well known form of the static
moment of inertia:

Ly
Jo =f mz° dz 33)
)

Both equations (30) and (31) can be used to
compute the polar moment of inertia but the
integral formulation is inherently more exact
from the numerical point of view because it only
uses the blade in-plane displacements while
equation (30) uses In addition the second and
third derivatives of these displacements at the
hub anchor point.

In order to compute the polar moment of inertia,
the equations of motion of the blade must be
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solved in the manner described above except that
a value is chosen for wand the arbitrary value
C4 used as initial condition for ¥; (v™) is
varied until the determinant (equation 18)
becomes zero. When a solution is obtained for
that ®, equations (30) and (31) are used to com-
pute J. This procedure must be repeated for each
value of w with the following boundary conditions
at z = %

Y8 Y7 Y6 Y5 Y4 Y3 Y2 Yl
r (case) u v u' V! u” v’ o™ v
(34)
1 o €Co o Coff C1 o o o
2 o Co o Co/% o C2 o o
3 0 €o 0 Co/f8 o o Cy
4 0o Co o G/ o o o €

4

These boundary conditions were explained earlier.

NUMERICAL RESULTS FOR THE MODES OF VIBRATION

The natural modes of vibration for the IREQ HAWT
blade have been computed for the following
conditions:
1) The first six modes of a stationary
cantilever blade.
2) The first six modes of a cantilever
blade at 100, 200 and 300 RPM.
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SECOND MODE
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Figure 8 — Third out-of-plane mode

For each of these cases, the following has been
obtained:

1) The resonant frequencies (p&les). The
zeros are also available from the polar
moment of inertia curves.

2) The normalized 1in-plane and out-of-
plane displacement curves or mode
shape. T .

3) The normalized in-plane and ocut-of-—
plane shear force and bending moment
distribution curves.

The results presented here are valid only for a
blade mounted perpendicularly in a rigid hub.
Dnly the coupled Iin-plane and out-of-plane
bending modes are considered, torsion being
neglected. One blade was tested experimentally
in the laboratory for the stationary case only.
The analytical and experimental frequencies are
compared in table I.

MODES ANALYTICAL EXPERIMENTAL
1 2.872 2.80
2 8.387 8.00
3 10.627 10.99
4 21.415 18.66
5 31.384 27.39
6 37.474 30.77

Table I. Natural resonant frequencies in Hertz
for a stationary blade.



It can be seen that the natural frequencies are
in close agreement for the first few modes. The
larger discrepancies for the higher modes are
believed to be caused by some uncertainty In the
construc tion causing local variations of mass and
stiffness which would affect mostly the higher
modes. Also, the fact that the blade support was
not perfectly rigid, means that the observed fre-
quencies would be lower than the one predicted
under the cantilever assumption., Finally, the
excitation of the blade was done with an electro-
magnetic exciter which requires some attachment
hardware at the tip of the blade. This addition
of mass at the tip, also tends to lower the fre-
quencies.

The normalized mode shapes, shear forces and
bending moments distribution curves are shown in
figures 5 to 10 for a stationary blade. Coupling
between the in-plane and out-of-plane modes is
evident from the figures. It should be noted
that the blade stiffness discontinuities at blade
station 0.10 and 0.22 do not affect the conti-
nuity of the distribution of the bending moment
and of the shear force.

The same computations were done for a rotating
blade at 100, 200 and 300 RPM. Table II shows

MODE ] RPM = 0 | RPM = 100 { RPM = 200 | RPM = 300

1 2.872 3.728 5.421 7.183
2 8.387 8.649 9.099 9.594
3 10.626 11.228 13.031 15.703
4 21.415 22.143 24.161 27.117
5 31.384 31.593 32.206 33.143
6 37.474 38.206 40.246 43.486

Table I1. Resonant frequencies of a rotating
blade.

the resonance frequencies obtained. The effect
of the rotational speed on the resonance fre-
quencles for the three first modes is shown in
figure 11. The agreement with some experimental
results 1is good.

NUMERICAL RESULTS FOR THE POLAR MOMENT OF INERTIA

The polar moment of inertia of a three bladed
rotor has been computed for vibration frequencies
up to 70 radians/sec and rotational speed up to
200 RPM. The values of Jp 4 y obtained with the
formula using the shear force and moment (equa-
tion 30) and the values Jf obtained with the
integral formula (equation 31) give comparable
results. However, as mentioned earlier the
values of Jy are implicitly more accurate than
the values of Jp 4+ M« This fact is demonstrated
numerically by observing that at very low fre-
quencies, the value of J, remains constant for
all RPM used while the value of Jp 4 My shows
small variations for each rotational speed
considered.
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The variation of the polar moment of inertia with
the vibration frequency and rotational speed is
presented in figure 12. Only the values of Jj
are shown. The pSles (resonmant frequencies) and
the zeros can be seen on this graph. The nu-
merical value of the zeros are presented 1In
table III.

ZEROS RPM = 0 RPM = 100 RPM = 200
1 2.916 3.789 5.588
9.912 10.689 -
Table I1I. Zeros of the rotor in Hertz

It can be seen that the value of J is relatively
constant at low frequency and comparable (less
than 0.47% at w = 0.5 rad/sec) to the static
value J,. _ (The static value J; is 807.29 newton-

°
meter—sec 5 )

1If damping had been included in the equations the
extreme variations of J at a pfle would be re-
duced, especially when a zero is very close to a
pdle, as i1s the case for the first mode. With
damping the p&le-zero doublet would produce only
a small variation in J, its importance depending
on the separation between the p8le and the zero.

CONCLUDING REMARKS

A mathematical model and its method of solution
have been presented for a tapered twisted, can-
tilever wind turbine blade with discontinuous
stiffness. The two fourth order differential
equations representing the in-plane and the ocut-
of-plane motion of the blade have been trans-
formed into eight first order equations and
solved with Runge-Kutta integrators. The blade
discontinuities have been approximated by im-
posing the continuity of displacements, slopes,
bending moments and shear forces. The centrifu-
gal force is included in the model; the corioclis
force was found to be negligeable. The polar
moment of inertla of a three bladed rotor is for-
mulated considering either the in-plane bending
moment and shear force at the anchor point or_the
integral of the in-plane displacements for vi-
brating, rotating blades.

It has been demonstrated that the method is
sufficient to compute the natural frequencies and
mode shapes of a stationary or rotating wind tur-
bine blade with large discontinuities in stiff-
ness. The normalized distributions of bending
moment and shear force are also computed. The
polar moment of inertia has been computed as a
function of frequency and rotational speed. Good
agreement with experimental frequencies has been
observed.

The computer program can be used efficiently for
the structural optimisation of the blades of
horizontal axis wind turbine. The computer tim»
and memory requirements are relatively small (ap-
proximately 20 sec and 200 K with an IBM 370, for
each mode) so that parametric studies are pos-
sible.



NOTE:

Numerical results of vibration frequencies and
node shapes for discontinuous turbine blades
published by Lang and Nemat - Nasser (ref. 3)
became known to us just recently, after the
analysis presented here was completed. The
accuracy of the method proposed here will be
compared later with the results of reference 3.
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NOMENCLATURE

Coefficients in numerical solu-
tion

Arbitrary constants used in nu-
merical solution

Couple applied by hub at anchor
point of the blade

Young's modulus
Shear forces
tions

Moment of inertia of blade about
X axls

Moment of inertia of blade about
y axls

Product of inertia

Total length of blade

Distance between axis of rotation
and anchor point of the blade
Bending moments about X and y
axis

Mass of blade per unit length
Rotational speed in rev/min
Tension force in blade
Displacement along x axis
Displacement along y axis
Cartesian coordinates

Variables of transformation

Twist angle of blade

Angular displacement of rotor
Rotational speed of rotor
Vibration frequency

First derivative with respect to
z

Second derivative with respect to
z

Third derivative with respect to
z

Fourth derivative with respect to
z

in x and y direc-




QUESTIONS AND ANSWERS

G. Beaulieu

From: W.C. Walton

Q: Woéld you agree that the root support stiffness should affect the lower modes first
so that thls is probably not the explanation for higher mode errors?

- A True. The support stiffness could explain the lower frequency in the first few
modes, while unknown mass and stiffness distribution and the tip mass addition
of the electromagnetic execiter could explain the deviations for the higher modes.

From: W.N. Sullivan

Q: How were the experimental resonant frequencies shown measured on the turning
rotor?

A: Directly measured from stratin gages recording on strip charts. We would have pre-
© -~ ferred magnetic tape recording and spectral analysis.

- -~ From: A. Wright

Q: Why do the boundary conditions for edjewise displacements change if hub is free to
rotate?

A: When the hub is free to rotate, an in-plane displacement v(l) is present at the
anchor point and similarly the slope of thie displacement is v(R)/%. If the hub
-would be fixed, v and v' would equal zero.

11d you elaborate further on the blade construction?

Referring to F%guré 1, we can see the stall shaft and plate insert near the root.
The steel is bounded to the fiberglass box which is present for the complete span

_of the blade. The fiberglass box is bounded to the outside skin having a NACA, 4415
srofile.

H Do you have an estimate for the damping in the blade?

A: ¥eo, but esome stationary blade vibration tests are being done now and exponential
decay will be measured to obtain an estimate of struetural damping. Aerodynamic
== damping will not be measured.
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